CnC Foren

CnC Foren (http://www.cncforen.de/index.php)
-   Off-Topic (http://www.cncforen.de/forumdisplay.php?f=13)
-   -   Mathematisches Denkspiel (http://www.cncforen.de/showthread.php?t=33676)

ComSubVie 03-07-2003 12:26

Naja, wenn A 52 kennt, dann gibts es nur noch 2 Möglichkeiten, und eine davon ist richtig :p

klaus52 03-07-2003 15:38

Zitat:

Original geschrieben von ComSubVie
@all: für das einfache mit den hüten: sie machen sich aus, das der erste schwarz sagt wenn er eine gerade anzahl von schwarzen hüten sieht, und weiß wenn er eine ungerade sieht ;)
Und nach diesem Muster soll höchstens einer sterben? Raff ich nicht? Ok er sagt jetzt schwarz, weil er eine gerade Anzahl von schwarzen Hüten sieht. Er hat allerdings vielleicht einen weißen auf => er könnte theoretisch sterben. Der zweite weiß, dass es eine gerade Anzhal von schwarzen Hüten gibt (oder er weiß, dass die Anzahl in wirklichkeit ungerade ist, falls der 1. einen schwarzen Hut aufhatte), aber weiß jetzt incht, ob es 2, 4, 6, oder 8 Hütte sind... und noch weniger weiß er ob er zu diesen 2 (4, 6, oder 8) Personen gehört oder nicht.... Also DAS ist mir jetzt irgendwie wikrlich zu hoch...

ComSubVie 03-07-2003 17:47

naja, aber er sieht ja alle außer seinem eigenen. wenn der 1. also schwarz gesagt hat, er also eine gerade anzahl von schwarzen hüten sieht (den eigenen - unabhängig welche farbe - nicht mitgezählt), dann kann der zweite ja zählen wie viele schwarze hüte er sieht (den des ersten wieder unberücksichtigt). sieht er eine gerade anzahl, so hat er einen weißen auf, sieht er eine ungerade anzahl muss er einen schwarzen aufhaben. usw ;)

AgentLie 03-07-2003 18:27

Nachdem ich mir jetzt nochmal den ganze Thread durchgelesen habe komme ich zum Schluss, dass ich noch einen Tipp brauchen. Ich habe jetzt ja eine Idee; praktisch einen Ansatz. Davon abgesehen, dass ich mit A=52 jetzt glaube ich eine Loesung habe moechte ich irgendwie den genauen Loesungsweg nahvollziehen. Mein Problem ist nur
Zitat:

Durch diese angaben sollte es jetzt möglich sein die möglichen zahlenpaare derart einzugrenzen das nur noch eines übrig bleibt.
Wie kann ich die Zahlen denn auf EINFACHEM Wege nach den kriterien durchgehen? :confused:

Chriss 03-07-2003 19:11

Jede Zahl von B in die sich in der Summe durch zwei primzahlen ausdrücken lässt kannst du knicken, weil sonst B nicht wüsste das A nix weis. :hmm: das sind alle Geraden. :D

@CSV: Ok, aber kannst du nicht den ganzen lösungsweg posten? Mich interessiert weniger die Lösung (die ich mit 52 ruckzuck hätte) sondern der Weg dahin - wenn man eben 52 NICHT weiß.

AgentLie 03-07-2003 19:28

Zitat:

Original geschrieben von Chriss
Jede Zahl von B in die sich in der Summe durch zwei primzahlen ausdrücken lässt kannst du knicken, weil sonst B nicht wüsste das A nix weis. :hmm: das sind alle Geraden. :D]
Bleiben ja nur noch 200 Loesungen zu ueberpruefen. ;)

Zitat:

@CSV: Ok, aber kannst du nicht den ganzen lösungsweg posten? Mich interessiert weniger die Lösung (die ich mit 52 ruckzuck hätte) sondern der Weg dahin - wenn man eben 52 NICHT weiß. [/b]
Dito

ComSubVie 05-07-2003 11:58

die mathematische lösung kann ich gleich anbieten, die für euch verständliche werde ich mehr oder weniger von klaus52 übernehmen sofern es keine einwände gibt, er hat das recht gut geschrieben ;)

mathematische lösung: http://www.math.ohio-state.edu/~mckinley/gss/SPTalk.pdf

klaus52 05-07-2003 12:38

Ich hab nichts dagegen - auch wenn ich mitlerweile Glaube, dass ich es leicht anders geschrieben hab, als ich es wirklich getan hab, vermute ich jedenfalls im nachhinein.... aber was ich geschrieben habe müsste, wenn ich richtig vermute eingrenzender sein (damit mein ich es schneller möglich sein damit einzugrenzen ;)), als was ich getan hab, falls ich richtig vermute.... :D Aber vielleicht vermute ich ja auch falsch, und ich hab alles so geschrieben wie ichs getan hab... bin zuuu faul nochmal das geschriebene durchzulesen... und dann auch noch dazu zu überlegen was ich getan hab.... und insbesondere muss ich noch Informathik aufgaben machen :kotz:

Aber noch eine Sache warum ich bei dieser Aufgabe einfach einen (unfairen) Vorteil hatte:
A=52

52! Mit dieser Zahl muss ich mich einfach auskennen, des war dadurch quasi ein Heimspiel :D

CU
 Klaus52

P.S.: Arg! Du hast uns die Aufgabe ja falsch gestellt! Ich hab mir grad dienen Link angeguggt und da liegt x und Y im Bereich [2,99], du hast aber [2, 100] gesagt! Das unnötige Arbeit verursacht :eg: :D ;)

ComSubVie 06-07-2003 21:53

Zitat:

Hi CSV!
Ich hoffe mal, das aktzeptierst du so als Lösung. Den Anfang wollte ich eigtl. in den Thread schreiben, bevor ich die Lösung hatte, um anderen zu helfen, und damit andere mir wieder helfen können, aber dann ist mir die LKösung doch noch eingefallen, und ich hab ein Update dazugeschrieben. Ich hoff das ganze ist dennoch halbwegs verständlich (ich kann dir auch gerne noch die excel Tabelle dazuschicken, in der alles außer der Anfang (jedenfalls für mich :D) erkennbar ist );)

Naja, hier ich das gnaze (hoffentlich richtig) gelöst hab:

Naja, ich sag euch jetzt mal wie ich bisher vorgegangen bin, vielleicht hilfts ja jemandem...

A=x*y
B=x+y

A darf sich nicht eindeutig auf zwei Faktoren zurückführen lassen.
Sprich: A darf z.B. nicht 35 sein, da die einzig in Frage kommenden Faktoren x und y 7 und 35 wären. Und in diesem Fall würde die Aussage des 1. Mathematikers nicht stimmen, dass er x und y nicht kennt.

Durch die Einschränkung von CSV, dass x, y, x+y, und x*y zwischen [1;100] liegen lässt sich nun eine Liste erstellen was für A in Frage kommt. (Ohne die Einschränkung würde es auch gehen, jedoch müsste die Liste dann bis 10.000 gehen :rolleyes: )

Dann wissen wir noch, dass aus der Summe B hervorgeht, dass Mathematiker 1 die Zahlen nciht kennen kann.

Das heißt die Summen dürfen sich nur in Summanten zerlegen lassen, deren Produkt nicht eindeutig auf 2 Faktoren zurückzuführen ist, weshalb auch nur ungerade Summen in Frage kommen (Goldbach'sche Vermutung). Weiterhin ist bekannt, dass die Summe höchstens 53 sein kann, da CSV uns ja gesagt hat, dass x*y< 101 ist, und wenn ich die nächst größere ungerade Zahl (53) in die Summanten zerlege, die, wenn man sie multipliziert eine möglichst kleine Zahl ergeben soll ( 2*51 ) liegt das Produkt bereits über 100. (Ohne die Einschränkung von CSV könnte man jedoch auf auf diese Weise weiterrechnen, jedoch läge die größt mögliche Summe, dann bei 200)
Alle Produkte der Summanten auszurechnen ist nun aber recht zeitaufwendig, also, wie gehe ich vor? Nunja, die Produkte der Summanden sind immer durch 2 teilbar (gerade), und durch die Faktoren, durch die das Produkt gebildet werden. Daher lassen sich alle Produkte, außer 2*(A-2) auf mehr als eine Weise bilden, und müssen nciht überprüft werden. Nun muss man nur noch schauen, welche Produkte aus 2*(A-2) noch durch eine andere Zahl als 2 teilbar sind (wie ich leider erst im Nachhinein festgestellt habe erkennt man dies ja ganz einfach, daran, dass A-2 keine Primzahl sein darf. :bang: )

Nun haben wir die Zahlen, die für A in Frage kommen, und die Zahlen, die für B in Frage kommen. Doch wie hilft uns das weiter? Oder anders gesagt: Wie kann Mathematiker 1 nun x und y kennen?

Die Antwort die, ich auf diese Frage gefunden habe ist folgende:
Das Produkt A muss eine Zahl sein, die wenn man alle für B in Frage kommenden Summen in alle möglichen Summanden zerlegt und diese jeweils miteinader multipliziert nur ein einziges mal vorkommt.

Nunja, das ahbe ich getan, jedoch gibt es bei mir 10 Zahlen, die nur 1 einziges mal vorkommen...
Auf diese 10 Zahlen treffen meiner Meinund nach die ersten beiden Zeilen des Gesprächs ohne weiteres zu. Und auch die dritte Zeile lässt sich damit noch lösen. Die 4te müsste dann allerdings lauten: "Wenn das so ist, kann ich x und y auf 10 Paare eingrenzen..."

[Update]
Ich hatte also eine entsprechende Liste erstellt, und da waren 10 solche Zahlen drin (Die Gesmtheit dieser Zahlen nene ich in Folgendem "[Z]"). Doch ich hatte etwas nicht bedacht:
Zu einer Summe x+y=[Z] durfte es nur eine Lösung geben, damit die 4.Zeile des Gesprächs berücksichtigt ist. (Und außerdem musste ich meine Liste noch verlängen, damit ich wirklich nur noch eine Zahl hatte, bei der dies der Fall war. Ich wusste zwar, dass in der Verlängerung nicht das richtige Ergebniss liegt wegen der Einschränkung (x*y<101) aber dennoch brauchte ich eine längere Liste um andere Zahlen auszuschließen.


So, zum Schluss nochmal die Lösung:
x=4
y=13

Chriss 08-07-2003 13:12

der lösungsweg den du also benutzt hast, klaus beruhte darauf eine liste mit lösungsmöglichkeiten aufzustellen und die dann nach und nach einzugrenzen?

EsSchneit 08-07-2003 14:54

oh, mittlerweile steht die läsung hier ja auch.
bin voll eprimiert, sass davor und hatte keinen plan uns legs mal vor fun meinen papa auf den schreibtisch... als ich das näcshte mal in mein zimmer kam lag da ne kurze erklärung und die richtige lösung... :rolleyes:
tja. hab wohl noch viiiel zu lernen :D

ComSubVie 08-07-2003 15:31

@chriss: jopp

klaus52 08-07-2003 18:48

Zitat:

Original geschrieben von Chriss
der lösungsweg den du also benutzt hast, klaus beruhte darauf eine liste mit lösungsmöglichkeiten aufzustellen und die dann nach und nach einzugrenzen?
Jupp, Zeile für Zeile das Gespräch durchgegangen und überlegt: Was sagt mir diese Zeile? Welche zahlen kann ich ausgrenzen? (bzw. anders herum: Welche Zahlen sind demnach noch möglich?)

Und irgendwann blieb nur noch eine mögliche Lösung übrig - allerdings hatte mich CSV's Einschränkung, dass x*y im Bereich [2;100] liegt dabei ziemlich lange verunsichert, da ich zuerst nicht auf den Gedanken gekommen bin, dass ich vielleicht noch mehr Zahlen brauche um alles bis auf eins ausschließen zu können :eg: Naja, ich kam aber dann doch noch drauf... ;)

Chriss 09-07-2003 20:16

Jetzt weis ich warum ich da nicht draufgekommen bin - das ist :A: :D


Alle Zeitangaben in WEZ +2. Es ist jetzt 02:59 Uhr.

Powered by vBulletin Version 3.7.3 (Deutsch)
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.